A complex of buckminsterfullerene with sulfur, $C_{60} \cdot 2S_8$: synthesis and crystal structure

L. I. Buravov, O. A. D'yachenko,* S. V. Konovalikhin, N. D. Kushch, I. P. Lavrent'ev, N. G. Spitsyna, G. V. Shilov, and E. B. Yagubskii

Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation.

Fax: +7 (096) 515 3588

The $C_{60} \cdot 2S_8$ complex was prepared by reaction of buckminsterfullerene C_{60} with sulfur in trichloroethylene and its single-crystal X-ray structure was studied at room temperature. Crystals of this compound are monoclinic, space group C 2/c, a = 20.90(1), b = 21.10(1), c = 10.537(9) Å, $\beta = 111.29(7)^\circ$, Z = 4, $d_{\rm calc} = 1.89~{\rm g}\cdot{\rm cm}^{-3}$. The crystal structure of the $C_{60} \cdot 2S_8$ complex consists of packed fullerene molecules that form hexagonal channels along the c axis with eight-membered crown-shaped S_8 cyclic molecules inside the channels. The distances between the centers of neighboring fullerene molecules are 10.036(7), 10.636(7), and 10.537(9) Å. Each C_{60} molecule is linked to eight S_8 molecules with ten shortened intermolecular contacts C...S 3.41(1)-3.52(2) Å. The average values of the C=C and C-C bond lengths are 1.32(3) and 1.47(3) Å, which attest to a significant degree of localization of electron density in the C_{60} molecule.

Key words: C₆₀ · 2S₈; fullerene complexes; synthesis; crystal structure.

Buckminsterfullerene C₆₀ is a weak acceptor that forms charge-transfer complexes, 1-5 or ion-radical salts (fullerides)6-8 with electron-donors depending on their donor ability. Some fullerides possess superconductivity or ferromagnetism.6-7 Spherical shape and high negative reduction potentials are characteristic of a C₆₀ molecule as an acceptor.9 The latter factor determines in particular the low stability of fullerides in air. However, charge-transfer complexes with C₆₀ are stable, and some of them (with donors $C_6H_4(OH)_2$, twin BEDT-TTF, BEDT-TTF, $(C_5H_5)_2$ Fe) are isolated as single crystals. 1-4 Analysis of the structures of these complexes shows that the nature of the donor considerably affects the packing and stability of the charge-transfer complexes with C₆₀. However, the criteria of donor selection for complexes based on C₆₀ with charge transfer have not yet been clearly defined. Conformational flexibility is an important structural feature^{2,3} of a donor molecule acting as a component of charge-transfer complexes with C₆₀. Donors able to change their conformation by adapting themselves to the rigid spherical shape of C₆₀ seem to be preferred for the formation of stable charge-transfer complexes with buckminsterfullerene.

Here we report the synthesis and crystal structure of a C_{60} complex with elemental sulfur having the composition $C_{60} \cdot 2S_8$. The choice of sulfur as a donor component was determined not only by its ability to form charge-transfer complexes with organic compounds, ¹⁰ but also by the expected conformation flexibility of the

cyclic crown-shaped S_8 molecule. It is also known that sulfur forms solid solutions with fullerenes. 12

Experimental

The $C_{60} \cdot 2S_8$ complex was prepared by the reaction of C_{60} (0.01 mol) with sulfur (0.15 mol) in trichloroethylene, which here is used as the solvent for C_{60} for the first time. In a study of extraction of fullerenes from soot obtained by evaporation of graphite in an electric arc, we found that trichloroethylene has a somewhat higher selectivity to C_{60} than toluene. This may be connected with the fact that trichloroethylene forms a rather stable solvate with C_{60} of the composition $C_{60} \cdot C_2 HCl_3$. The structure of this solvate and its thermal characteristics will be described elsewhere.

The starting reagents were mixed at 75 °C and kept at this temperature for 2 h. Then the liquor was filtered and the mother liquor was cooled at a rate of $\approx 1.0~{\rm deg \cdot h^{-1}}$ from 70 °C to room temperature. The crystals formed (black, well-cut 3-mm bars) were filtered off, washed with ethanol, and dried *in vacuo*. X-ray single crystal, microprobe, and IR spectral data showed that the solvent (trichloroethylene) was not incorporated in the crystals of the C_{60} —sulfur complex.

The crystal structure of $C_{60} \cdot 2S_8$ was determined at room temperature. Crystal data: $C_{60}S_{16}$, M = 1233.68, monoclinic, space group C 2/c, T = 296 K, a = 20.90(1), b = 21.10(1), c = 10.537(9) Å, β = 111.29(7)°, V = 4331.0 Å³, Z = 4, d_{calc} = 1.89 g·cm⁻³, F(000) = 1824, μ = 7.66 cm⁻¹. The intensities of 1304 independent non-zero reflections with $I > 3\sigma(I)$ were measured on a crystal (dimensions 0.50 × 0.01 × 0.01 mm) on an automatic four-circle KM-4 KUMA

Table	1. Atomic	coordinates	$(\times 10^4)$	and	$B_{\rm eq}$	in	C ₆₀	· 2S ₈	structure
-------	-----------	-------------	-----------------	-----	--------------	----	-----------------	-------------------	-----------

Atom	x	у	z	$B_{\rm eq}/{\rm \AA}^2$	Atom	x	у	Z	$B_{\rm eq}/{\rm \AA}^2$
S(1)	4057(1)	4656(1)	1803(2)	11.4	C(12)	955(7)	5914(6)	-3487(13)	18.4
S(2)	3927(1)	3698(1)	1655(2)	11.4	C(13)	504(6)	6707(4)	-5280(10)	13.4
S(3)	2922(1)	3481(1)	1334(2)	10.6	C(14)	-92(6)	7706(4)	-5605(9)	11.
S(4)	2379(1)	3416(1)	-0706(2)	10.4	C(15)	1724(6)	6553(9)	-1287(14)	19.8
S(5)	1914(1)	4272(1)	-1289(2)	9.9	C(16)	1096(6)	6441(6)	-4050(13)	15.4
S(6)	2459(1)	4741(1)	-2264(2)	10.5	C(17)	514(6)	7360(5)	-5273(9)	12.0
S(7)	3076(1)	5372(1)	-0914(2)	10.6	C(18)	1711(6)	7060(14)	-2137(22)	27.:
S(8)	4018(1)	4970(1)	-37(2)	10.1	C(19)	1457(5)	7093(9)	-3369(15)	19.:
C(1)	256(15)	5397(4)	-2483(56)	21.5	C(20)	1613(5)	7356(11)	16(11)	20.0
C(2)	855(10)	5820(7)	-290(17)	19.3	C(21)	1632(5)	7633(9)	-1273(15)	17.
C(3)	-213(9)	5794(6)	-4798(15)	19.7	C(22)	1085(5)	7589(6)	-4154(11)	13.
C(4)	-736(7)	6728(7)	-6010(9)	13.6	C(23)	1199(5)	7693(6)	469(10)	13.3
C(5)	1183(8)	6368(12)	0433(18)	16.6	C(24)	1279(7)	8166(8)	-2013(17)	17.
C(6)	960(9)	5655(5)	-1608(21)	23.5	C(25)	1015(6)	8094(8)	-3480(13)	16.2
C(7)	385(11)	5664(6)	-3878(25)	26.6	C(26)	830(7)	8268(5)	-279(12)	14.8
C(8)	-78(8)	6373(4)	-5620(10)	14.7	C(27)	933(11)	8422(7)	-1361(14)	17.4
C(9)	-718(5)	7366(6)	$-600\dot{4}(9)$	12.2	C(28)	378(9)	8439(5)	-3824(16)	16.4
C(10)	1607(8)	6700(12)	-5(21)	20.0	C(29)	139(9)	8242(5)	-158(12)	13.3
C(11)	1428(7)	6044(7)	-1820(15)	20.4	C(30)	293(9)	8653(4)	-2583(20)	15.9

DIFFRACTION diffractometer (monochromatic Mo-K α -radiation, $\lambda = 0.7107$ Å; ω -2 θ scan technique, $0.035 \le \sin \theta/\lambda \le 0.526$ Å⁻¹). The structure was solved by the direct method and refined by a least-squares technique in full-matrix anisotropic

approximation to R=0.041 using the package of AREN-88 programs 13 . The atomic coordinates and thermal parameters are given in Table 1.

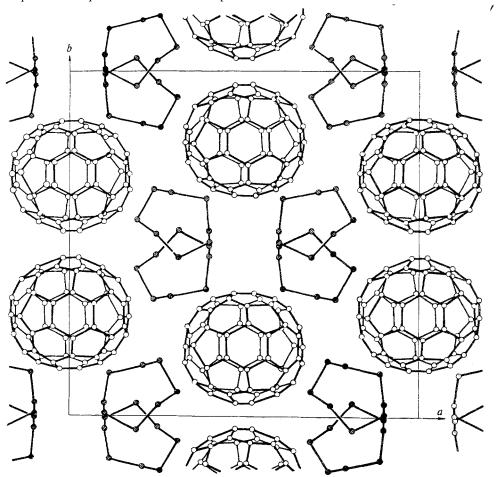


Fig. 1. Projection of the $C_{60} \cdot 2S_8$ complex structure on the ab plane.

Table 2. B	Bond lengths	(d)	in th	ne Can	molecule
------------	--------------	-----	-------	--------	----------

d/Å	Bond	d/Å	Bond	d/Å		
2.036(4)	C(17)-C(20)	1.42(1)	C(5)-C(10)	1.34(3)		
2.052(3)	C(18)-C(21)	1.56(3)	C(7)-C(12)	1.23(2)		
2.035(3)	C(20)-C(21)	1.49(2)	C(9)-C(14)	1.42(2)		
2.029(3)	C(21)-C(24)	1.41(2)	C(10)-C(15)	1.49(3)		
1.10(5)	C(23)-C(26)	1.50(2)	C(11)-C(15)	1.26(2)		
1.68(6)	C(25)-C(28)	1.44(2)	C(12)-C(16)	1.34(2)		
1.41(3)	C(26)-C(29)	1.50(3)	C(13)-C(17)	1.38(1)		
1.30(2)	C(28)—C(29)'	1.28(2)	C(14)—C(29)'	1.41(2)		
1.49(3)	C(30)—C(30)'	1.30(3)	C(16)-C(19)	1.61(2)		
1.34(2)	S(1) - S(8)	2.021(3)	C(18)-C(19)	1.21(2)		
1.36(3)	S(3)—S(4)	2.037(3)	C(19)-C(22)	1.38(2)		
1.34(2)	S(5)—S(6)	2.046(3)	C(20)-C(23)	1.33(2)		
1.49(2)	S(7) - S(8)	2.030(3)	C(22)-C(25)	1.32(2)		
1.38(3)	C(1)-C(6)	1.52(3)	C(24)-C(25)	1.45(2)		
1.69(2)	C(2)-C(3)'	1.38(3)	C(26)-C(27)	1.28(2)		
1.54(1)	C(2)-C(6)	1.52(3)	C(27)-C(30)	1.56(2)		
1.39(2)	C(3)-C(8)	1.58(2)	C(28)-C(30)	1.45(3)		
1.39(3)	C(4)-C(8)	1.49(2)				
	2.036(4) 2.052(3) 2.035(3) 2.029(3) 1.10(5) 1.68(6) 1.41(3) 1.30(2) 1.49(3) 1.34(2) 1.36(3) 1.34(2) 1.49(2) 1.38(3) 1.69(2) 1.54(1) 1.39(2)	2.036(4) C(17)—C(20) 2.052(3) C(18)—C(21) 2.035(3) C(20)—C(21) 2.029(3) C(21)—C(24) 1.10(5) C(23)—C(26) 1.68(6) C(25)—C(28) 1.41(3) C(26)—C(29) 1.30(2) C(28)—C(29) 1.34(2) S(1)—S(8) 1.36(3) S(3)—S(4) 1.34(2) S(5)—S(6) 1.49(2) S(7)—S(8) 1.38(3) C(1)—C(6) 1.69(2) C(2)—C(3)' 1.54(1) C(2)—C(6) 1.39(2) C(3)—C(8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Results and Discussion

The crystal packing of C_{60} and S_8 molecules is given in Fig. 1. The C_{60} molecules are located in a unit cell on two-fold rotation axes. This packing of C_{60} leads to

formation of large cavities in the form of hexagonal channels parallel to the c axis of the crystal. Four S_8 molecules are located in each of these cavities of the unit cell. Using the terminology of clathrate compounds, an ensemble of six fullerene molecules acts as a "host",

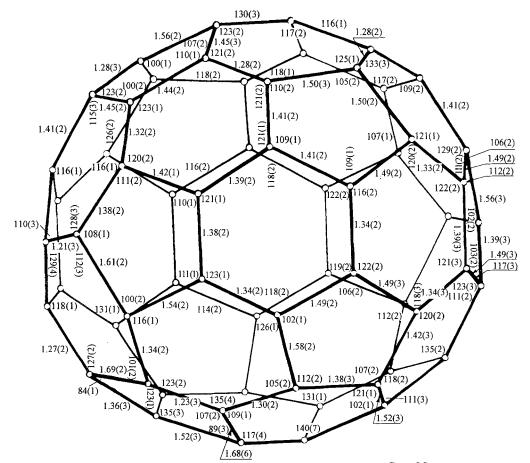


Fig. 2. Bond lengths (d, \dot{A}) and angles (ω, \deg) of C_{60} buckminsterfullerene in the $C_{60} \cdot 2S_8$ complex.

Table 3. Bond angles (ω) in the C₆₀ molecule

Angle	ω/deg	Angle	ω/deg	Angle	ω/deg
S(2)-S(1)-S(8)	107.1(2)	C(18)-C(21)-C(24)	116(1)	C(4)-C(8)-C(13)	118(2)
S(2)-S(3)-S(4)	109.5(1)	C(17)-C(22)-C(19)	111(2)	C(4)-C(9)-C(23)'	116(1)
S(4)-S(5)-S(6)	106.8(2)	C(19)-C(22)-C(25)	116(1)	C(5)-C(10)-C(15)	123(3)
S(6)-S(7)-S(8)	108.0(3)	C(20)-C(23)-C(26)	121(1)	C(20)-C(10)-C(15)	103(2)
C(6)-C(1)-C(7)	89(3)	C(21)-C(24)-C(25)	115(2)	C(6)-C(11)-C(12)	84(1)
C(7)-C(1)-C(1)'	117(4)	C(25)-C(24)-C(27)	123(2)	C(7)-C(12)-C(11)	123(1)
C(5)-C(2)-C(3)'	107(2)	C(22)-C(25)-C(28)	123(1)	C(11)-C(12)-C(16)	101(2)
C(7)-C(3)-C(8)	105(2)	C(23)-C(26)-C(27)	117(2)	C(8)-C(13)-C(17)	123(2)
C(8)-C(3)-C(2)'	112(2)	C(27)-C(26)-C(29)	125(1)	C(9)-C(14)-C(17)	118(2)
C(8)-C(4)-C(5)'	106(2)	C(24)-C(27)-C(30)	100(1)	C(17)-C(14)-C(29)	121.5(9)
C(2)-C(5)-C(4)'	112(2)	C(25)-C(28)-C(29)'	118(1)	C(15)-C(18)-C(21)	102(1)
C(2)-C(5)-C(10)	119(2)	C(30)-C(28)-C(29)'	121(1)	C(16)-C(19)-C(18)	112(3)
C(2)-C(6)-C(11)	111(2)	C(26)-C(29)-C(28)'	117(1)	C(18)-C(19)-C(22)	128(3)
C(1)-C(7)-C(12)	107(2)	C(27)-C(30)-C(28)	107(2)	C(10)-C(20)-C(23)	122(2)
C(3)-C(7)-C(12)	135(4)	C(28)-C(30)-C(30)'	123(1)	C(18)-C(21)-C(20)	106(2)
C(3)-C(8)-C(13)	126(1)	S(1)-S(2)-S(3)	109.6(2)	C(20)-C(21)-C(24)	129(2)
C(4)-C(9)-C(14)	122(1)	$\dot{S}(3) - S(4) - S(5)$	106.3(2)	C(17)-C(22)-C(25)	120(1)
C(23)'-C(9)-C(14)	109(1)	S(5)-S(6)-S(7)	107.1(1)	C(20)-C(23)-C(9)'	120(2)
C(5)-C(10)-C(20)	121(3)	S(1)-S(8)-S(7)	105.5(2)	C(26)-C(23)-C(9)'	107(1)
C(6)-C(11)-C(15)	135(2)	C(6)-C(1)-C(1)'	140(7)	C(21)-C(24)-C(27)	109(2)
C(15)-C(11)-C(12)	127(2)	C(5)-C(2)-C(6)	118(2)	C(22)-C(25)-C(24)	126(2)
C(7)-C(12)-C(16)	123(2)	C(6)-C(2)-C(3)'	121(1)	C(24)-C(25)-C(28)	100(1)
C(8)-C(13)-C(16)	114(2)	C(7)-C(3)-C(2)'	131(1)	C(23)-C(26)-C(29)	105(2)
C(16)-C(13)-C(17)	111(1)	C(8)-C(4)-C(9)	119(1)	C(24)-C(27)-C(26)	133(3)
C(9)-C(14)-C(29)'	109(1)	C(9)-C(4)-C(5)'	122(2)	C(26)-C(27)-C(30)	116(1)
C(15)-C(18)-C(19)	129(4)	C(10)-C(5)-C(4)'	118(3)	C(25)-C(28)-C(30)	110(1)
C(21)-C(18)-C(19)	119(3)	C(2)-C(6)-C(1)	102(1)	C(26)-C(29)-C(14)	110(1)
C(16)-C(19)-C(22)	108(1)	C(1)-C(6)-C(11)	135(3)	C(14)'-C(29)-C(28)'	21(2)
C(10)-C(20)-C(21)	112(2)	C(1)-C(7)-C(3)	108(1)	C(27)-C(30)-C(30)	117(1)
C(21)-C(20)-C(23)	111(2)	C(3)-C(8)-C(4)	102(1)		

while the four S_8 molecules are "guests". Each C_{60} molecule is bound to eight S_8 molecules with ten slightly shortened intermolecular contacts C...S 3.41(1)–3.52(2) Å, which attests to the existence of three-dimensional weak intermolecular donor-acceptor interactions in the crystal.

Five molecules of C₆₀ itself, along with the S₈ molecules, are the nearest neighbors of the fullerene molecule. The distances between the centers of the neighboring fullerene molecules connected by the inversion centers at 0, 1/2, 0 and 1/4, 3/4, 0 are 10.036(7) and 10.636(7) Å, respectively (Fig. 1), and 10.537(9) Å for the C_{60} molecules bound by translation along the c axis. Generally, the packing mode of the C_{60} molecules in the structure of $C_{60} \cdot 2S_8$ forming corrugated layers of six-membered cycles $(C_{60})_6$ with the "chair" conformation is diamond-like, with the difference that we take into consideration C₆₀ molecules instead of C atoms and, as a consequence, intermolecular bonds, instead of chemical bonds. On the other hand, the C...C distance between the fullerene molecules located along the [011] diagonal in the structure of C₆₀·2S₈ is the same as between the layers in graphite: 3.34(2) and 3.35(5) Å, respectively. The mean value of the C₆₀ sphere radius is 3.49(2) Å (carbon atoms are located at 3.44(2)— 3.53(2) Å from the center of the molecule). Bond lengths and angles in the C_{60} fullerene molecule are given in Fig. 2 and Tables 2, 3. The mean values of the eighteen crystallographically independent C=C bonds and the thirty C—C bonds are 1.32(3) and 1.47(3) Å, while the mean values of the bond angles in the five- and six-membered cycles vary in the ranges $107.6-108.0^{\circ}$ and $119.7-120.0^{\circ}$ with a maximum deviation of 0.07 Å of atoms from the averaged planes in the penta- and hexagons.

The S_8 molecule is an eight-membered cycle with a "crown" conformation. The S-S bond lengths, S-S-S bond angles, and S-S-S-S torsion angles vary in the ranges 2.021(3)-2.052(3) Å, 105.5(2)-109.5(1)° and 92.9-103.8°, respectively. These differences in the parameters of bond lengths and angles significantly exceed the variation of the same parameters in the orthorhombic sulfur modification (2.047(1)-2.053(1) Å, 107.4(1)-109.01(1) and 98.1-100.9°), which confirms the conformational flexibility of the S_8 molecule in the structure of the $C_{60} \cdot 2S_8$ complex and is caused by steric factors in its packing with C_{60} fullerene. In the $C_{60} \cdot 2S_8$ crystal, the S_8 molecules form shortened intermolecular contacts not only with the C_{60} molecules, but with each other as well (S...S 3.451(3) Å).

Summarizing the most significant results of the X-ray study of the $C_{60} \cdot 2S_8$ complex, it is necessary to pay

attention to the considerable degree of localization of the double and single carbon—carbon bonds (1.32(3) and 1.47(3) Å) in C_{60} and the isometric packing of the C_{60} molecules (10.036(7), 10.537(9), 10.636(7) Å) in the crystal lattice. Our investigation shows that, with the appropriate choice of the donor, it is possible to obtain charge-transfer complexes with crystallographically ordered C_{60} molecules even at room temperature. Sulfur may be a versatile donor for fullerenes. Recently, the formation of a C_{70} complex with sulfur of the composition $C_{70} \cdot 6S_8$, in which the C_{70} molecules are also crystallographically ordered, has been reported.¹⁴

When this investigation was completed and the results were submitted for publication, the authors of this work became aware that the structure of the $C_{60} \cdot 2S_8$ complex prepared in a different way had also been studied by other researchers. 15

This work was financially supported by the Russian Foundation for Basic Research (Grant №93-03-18705).

References

- 1. O. Ermer, Helv. Chim. Acta, 1991, 74, 1339.
- 2. A. Izuoka, T. Tachikawa, T. Sugawara, Y. Saito, and H. Shinohara, *Chem. Lett.*, 1992, 1049.

- A. Izuoka, T. Tachikawa, T. Sugawara, Y. Suzuki, M. Konno, Y. Saito, and H. Shinohara, J. Chem. Soc., Chem. Commun., 1992, 1472.
- J. D. Crane, P. B. Hitchcock, H. W. Kroto, R. Taylor, and D. R. M. Walton, J. Chem. Soc., Chem. Commun., 1992, 1764.
- T. Pradup, K. K. Singh, A. P. B. Sinha, and D. E. Morris, J. Chem. Soc., Chem. Commun., 1992, 1747.
- 6. Special Issue on Buckminsterfullerenes, Acc. Chem. Res., 1992, 25, No 3.
- P.-M. Allemand, K. C. Khemani, A. Koch, F. Wudl, K. Holczer, S. Donovan, G. Gruner, and J. D. Thompson, Science, 1991, 253, 301.
- A. Penicaud, J. Hsu, C. A. Reed, A. Koch, K. C. Khemani,
 P.-M. Allemand, and F. Wudl, J. Am. Chem. Soc., 1991,
 113, 6698.
- P.-M. Allemand, A. Koch, F. Wudl, Y. Rubin, F. Diederich, M. M. Alvarez, S. J. Anz, and R. L. Whetten, J. Am. Chem. Soc., 1991, 113, 1050.
- 10. T. Bjorvatten, Acta Chem. Scand., 1962, 16, 749.
- 11. D. E. Sands, J. Am. Chem. Soc., 1965, 87, 1395.
- D. Heymann, J. C. Stormer, and M. L. Pierson, *Carbon*, 1991, 29, 1053.
- V. I. Andrianov, AREN-88, Institut Kristallografii Akad. Nauk SSSR, Moscow, 1988.
- 14. G. Roth and P. Adelmann, Abstr. MRS, November 30-December 4, Fall 92, Boston, 1992, 25.
- 15. G. Roth and P. Adelmann, Appl. Phys., 1993, A56, 169.

Received November 9, 1993